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Abstract Many problems in climate science require the identification of signals obscured by both the
“noise” of internal climate variability and differences across models. Following previous work, we train
an artificial neural network (ANN) to predict the year of a given map of annual‐mean temperature (or
precipitation) from forced climate model simulations. This prediction task requires the ANN to learn forced
patterns of change amidst a background of climate noise and model differences. We then apply a neural
network visualization technique (layerwise relevance propagation) to visualize the spatial patterns that lead
the ANN to successfully predict the year. These spatial patterns thus serve as “reliable indicators” of the
forced change. The architecture of the ANN is chosen such that these indicators vary in time, thus capturing
the evolving nature of regional signals of change. Results are compared to those of more standard
approaches like signal‐to‐noise ratios and multilinear regression in order to gain intuition about the reliable
indicators identified by the ANN. We then apply an additional visualization tool (backward optimization) to
highlight where disagreements in simulated and observed patterns of change are most important for the
prediction of the year. This work demonstrates that ANNs and their visualization tools make a powerful pair
for extracting climate patterns of forced change.

Plain Language Summary We demonstrate that machine learning methods, specifically
artificial neural networks and their visualization tools, can be used to visualize indicators of change in
surface temperature and precipitation within climate models and the observations. Furthermore, we show
how neural network visualization tools can assist scientists in comparing results across climate models, as
well as between climate models and observations. This work demonstrates that ANNs and their
visualization tools make a powerful pair for extracting climate patterns of forced change.

1. Introduction

Climate science has often required the identification of signals obscured by both climate “noise” and dis-
agreements across models, and the field has a rich history of tools developed for this purpose. In addition
to a large number of standard statistical techniques (Zwiers & von Storch, 2004), a common recent approach
has been the utilization of large ensembles of climate model simulations (Deser et al., 2012; Hawkins et al.,
2016; Kumar & Ganguly, 2018; Lehner et al., 2016). In particular, this approach allows researchers to esti-
mate the climate “noise,” defined as the range of climate outcomes arising from unpredictable internal (or
natural) climate variability under a particular radiative forcing scenario, and the structural component of
uncertainty due to model differences when multi‐model ensembles are used (Deser et al., 2020).
Moreover, the forced climate signal associated with a radiative forcing scenario can be obtained by averaging
across a sufficient number of ensemble members, since time sequences of internal variability are randomly
phased between individual ensemble members. While the resulting ensemble‐mean spatial pattern captures
the forced response, it is difficult to identify this pattern in a single year of observations because the climate
of any given year is always a combination of the forced signal and internal variability.

The challenge of identifying the forced response in a single realization of the climate system has been
recently approached with a variety of advanced statistical techniques. For example, Sippel et al. (2019)
employs novel dynamical adjustment techniques to extract the full forced response from that of internal
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variability within a single ensemble member of a single climate model. Another approach to identify climate
signals was recently demonstrated by Barnes et al. (2019) (hereafter B19). They showed that machine learn-
ing techniques, specifically artificial neural networks (ANNs), are powerful and useful tools that can help
identify patterns of forced climate change within climate model simulations as well as observations. This
was achieved by successfully training an ANN to predict the year of a given annual‐mean temperature (or
precipitation) map from forced CMIP5 simulations. Since each model simulation differs in the internal
variability of any given year, this design requires the ANN to learn reliable indicator patterns of each year
amidst a background of internal variability and model disagreement. These indicator patterns are thus a
combination of the common forcings (e.g., aerosol emissions and anthropogenic greenhouse gas) across
all simulations. The climate response to external forcings is typically computed as the average change (or
trend) in time across many climate model simulations. In contrast, the indicator patterns identified by the
ANN offer the most reliable regions for identifying change in any given year, taking into account the regio-
nal internal variability, signal, and disagreement across models. These patterns may thus be used to detect
and attribute observed regional change to external forcings, or to identify where climate model biases are
most important for obscuring regional change.

While B19 demonstrated that ANNs are capable of identifying forced patterns of change in a single
annual‐mean map of temperature or precipitation, they did not present the patterns themselves due to the
complexity of visualizing the decision‐making process of a nonlinear ANN. Instead, they showed oversim-
plified patterns that came from a much simpler ANN. Here, we apply a recently developed neural network
visualization tool (layerwise relevance propagation) to explore the ANN's indicator patterns in detail and
quantify how they may vary nonlinearly in time. We compare the patterns from the ANN with those
obtained from more classical approaches (e.g., signal‐to‐noise ratios and multi‐linear regression) to gain
further intuition about the ANN output. Finally, we apply an additional neural network visualization tool
(backward optimization) to map the regions where climate model biases may be most relevant when iden-
tifying forced change.

2. Data
2.1. CMIP5 Climate Model Output

We analyze the same data used in B19. Namely, annual‐mean global two‐meter air temperature and preci-
pitation rate output from climate model simulations performed for the Coupled Model Intercomparison
Project, phase 5 (CMIP5 Taylor et al., 2012). Due to data availability, single simulations from 29 models
are analyzed for temperature, while 22 models are analyzed for precipitation (see Supp. Tables 1 and 2).
The ANN requires all input maps to be the same size; thus, prior to analysis, all fields were interpolated
to a common 4 degree latitude by 4 degree longitude grid (45 latitude values by 90 longitude values ¼
4050 total grid points). The small number of grid points in this relatively coarse grid helped substantially
reduce the time required for ANN training.

We analyze annual‐mean temperature and precipitation under historical forcing (from 1920 through 2005)
and then the RCP8.5 scenario through the year 2099 (Meinshausen et al., 2011). Since all of the model simu-
lations have similar external forcings, deviations across model projections mostly reflect differences due to
climate model physics, resolution, and numerics (i.e., model uncertainty) as well as differences in the
unforced, or internal, variability of the climate system (Hawkins & Sutton, 2009; Lehner et al., 2020).

2.2. Observations

We assess the applicability of the ANN trained on climate models to the real world by evaluating the ANN's
skill in predicting the year of observed maps of annual mean temperature and precipitation. For observa-
tions of surface temperature, we utilize the BEST (Berkeley Earth Surface Temperature) gridded fields from
Berkeley Earth (Rohde et al., 2013). Specifically, we analyze the Monthly Land + Ocean, Average
Temperature with Air Temperatures at Sea Ice (name on website given as Recommended; 1850—Recent)
interpolated to a common grid of 4 degree latitude by 4 degree longitude. The climatology field for each
month is provided by BEST and was added to the BEST monthly anomalies to obtain the total temperature
(K). Data coverage is incomplete in BEST prior to the mid 20th Century. We thus only analyze data from
1956 to 2018 when there is complete global coverage.
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Monthly observational precipitation fields were obtained from the NOAA Global Precipitation Climatology
Project (GPCP), version 2.3, for 1979 to 2018 (Adler et al., 2018). Data from rain gauge stations, satellites, and
sounding observations are merged in GPCP to estimate monthly rainfall (mm/day). Data were downloaded
from the NOAA ESRL website (see Acknowledgements) and were interpolated to the common 4 degree grid
prior to analysis.

3. Neural Network Methods
3.1. Neural Network Architecture

In B19, the analysis was set up as a prediction problem. Annual‐meanmaps of temperature (or precipitation)
were taken as input and an ANN was trained to predict the year of the map, as shown in Figure S1 in the
supporting information. Specifically, each grid point in the input map was represented by a unit in the input
layer of the ANN (4050 input neurons in total from the 45 latitude by 90 longitude grid points). The input
layer was followed by a number of hidden layers, and the final output layer was a single neuron, representing
the yearly prediction as a single scalar. This type of set‐up is known as a regression task, since the output was
a continuous number.

In contrast, in this work, we frame the prediction problem as a classification task; namely, rather than gen-
erating an estimate of the year as a continuous number, we instead estimate which one of a number of pos-
sible classes the year belongs to. Specifically, the output layer of the ANN in Figure 1 consists of 22 classes,
each one representing one decade, and it is the ANN's task to determine which class (i.e., decade) the input
map belongs to. Formulating the problem as a classification task is a necessity because the specific ANN
visualization tool we employ (layerwise relevance propagation (LRP); section 3.3) was developed for classi-
fication architectures, not regression architectures.

ANNs used for classification typically use crisp encoding (i.e., one‐hot encoding) for the output classes, map-
ping the year of an input sample to exactly one output class. For example, the year 1920 would be encoded as
completely belonging to the class 1920–1929, and no other class. This results in large information loss since
there is no information left on whether 1920 lies toward the beginning, middle, or end of that decade, or

Figure 1. Schematic of ANN architecture employed here to predict the year of a map of 2‐m temperature. The output
layer is divided into classes, each representing a single decade. The ANN task is to predict the class probabilities
associated with the input, which is called a classification task. Here fuzzy classification is used to encode the
specific year, and binary cross‐entropy is used during training.
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whether neighboring years share similar characteristics. To retain such information we instead use fuzzy
encoding, which maps any year to one or more neighboring classes with varying degrees of membership
(encoded as probabilities), with the sum of the probabilities summing to one (Zadeh, 1965). Using
triangular membership functions (Zadeh, 1965) with a width equal to one decade results in each year
being mapped to one or two neighboring classes with nonzero probabilities. Specifically, if one denotes
each output class by its central year, for example, 1935 for 1930–1939, then the class probabilities are
chosen such that the decade‐weighted sum equals the exact year. This encoding and decoding is
visualized in Figure 2, where the decade classes are specified on the y‐axis, and the corresponding
probabilities associated with each class are specified on the x‐axis. For each colored year (1925, 1984,
2040, and 2078), the dots in the same color indicate the corresponding probabilities. For example, the year
1925 is encoded as a single probability of 1.0 for the class called “1925,” while the year 1984 has a
probability of 0.9 for class “1985” and probability 0.1 for class “1975.” Indeed, the decade‐weighted sum,
0.9 · 1985 + 0.1 · 1975¼ 1984, gives the correct year of 1984. This approach implements “fuzzy decadal
classification” at the ANN output layer and the ANN is then tasked with assigning the correct (fuzzy)
probabilities for an input sample to each of these classes/decades. This multilabel, fuzzy classification
approach allows for encoding of the exact (true) year in the output classes, while still ensuring that the
output is a set of class probabilities for use with our preferred visualization tool, LRP (section 3.3).

All ANNs in this analysis have two hidden layers with 20 hidden units in each. This is a relatively shallow
network for a typical ANN; however, our goal is to understand what the network has learned. We therefore
opted for the simplest network that did not degrade accuracy. We find that increasing the number of units

Figure 2. Fuzzy classification encoding and decoding of example years. In the encoding step each colored year, 1925,
1984, 2040, and 2078, is mapped to the class probabilities indicated by the dots in the same color. For example, 1925 is
encoded as probability 1.0 for class “1925,” while 1984 is encoded as probabilities 0.1 and 0.9 for classes “1975” and
“1985,” respectively. The decoding step for each year can be reconstructed as the weighted sum of the decade
centers, where the weights are determined by each decade's class probability. For example, 1984 results from
the weighted sum 0.1 · 1975 + 0.9 · 1985¼ 1984.
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and/or layers does not substantially improve predictions. Additional details about the architecture, includ-
ing activation functions, are described in Appendix A.

3.2. Neural Network Training

Each ANN is trained over the entire 1920–2099 period on 80% of the climate model simulations and then
tested on the remaining 20%. This leads to training on 23 simulations and testing on 6 for temperature, while
training on 18 simulations and testing on 4 for precipitation. Except for Figure 5, all results for a given vari-
able utilize the same set of training/testing simulations, as well as the same neural network configuration
and weight/bias initialization. This is done to make discussions more straightforward as only one ANN is
analyzed at a time. The robustness of our conclusions to these choices will be discussed in section 5.

We trained the ANNs using the binary cross‐entropy loss between the predicted class probabilities and the
correct class probabilities across the training samples (see Appendix A for more details). Given the size of
our input maps, and the small size of our output layer, the possibility of overfitting is quite large. Thus,
we apply ridge regularization (L2 regularization) to the weights of the first hidden layer to help reduce the
chances of overfitting, and to aid in visualizing the patterns learned by the ANN (further discussed in
section 4). Ridge regularization acts to spread the importance across the inputs by adding an additional term
to the cross‐entropy loss that is proportional to the sum of the squared weights, which is consistent with our
understanding that both temperature and precipitation exhibit substantial spatial autocorrelation. For both
temperature and precipitation, the regularization parameter is 0.01. Additional details about the training,
including gradient descent optimizer, and learning rate, are described in Appendix A.

To assist with training, we standardize the data prior to training by subtracting the mean across all training
simulations and years and dividing by the standard deviation across all training simulations and years at
each grid point. Since we standardize the data using means and standard deviations across all models, we
do not remove differences in model means or variances. Alternative standardization approaches are being
explored and left for future studies. In some of the figures, we choose to bring the fields back into physical
units by multiplying by the standard deviation and adding back the mean (e.g., Figure 11).

3.3. Visualization with Layerwise Relevance Propagation (LRP)

A major aim of this work is to determine the patterns of forced change learned by the ANN that act as reli-
able indicators of the year (i.e., the class probabilities). To do this, we utilize a neural network interpretation
method called “layerwise relevance propagation” (LRP) to determine the most relevant regions of the input
maps for the ANN's prediction (e.g., Bach et al., 2015; Montavon et al., 2017). Toms et al. (2020) provide the
first detailed discussion of how LRP can be used for interpretable neural networks in geoscience. We also
provide the most relevant details of the method here.

LRP is a neural network interpretability method that projects the logic, or decision‐making process, of a
neural network back onto the original dimensions of the input. LRP traces the pathways through which
information flows during the network's decision‐making process for each individual sample, and shows
which locations in the input image the network focuses its attention on the most (i.e., the relevance of each
input pixel). LRP is implemented in the following way. Once a neural network has been trained, a sample is
passed through the network to obtain a prediction (i.e., output value). This single‐valued prediction is then
propagated backwards to infer the relevance of each input pixel for that sample's prediction. With LRP, the
output value is conserved as it is propagated backwards, which ensures that all of the information used to
arrive at the network's decision is projected back onto the original input. Toms et al. (2020) provide a detailed
schematic and description of this process (their Figure 3).

Since LRP propagates only a single output value at a time, we propagate relevance only for the decade with
the largest output value (i.e., probability or likelihood) predicted by the neural network, even though our
fuzzy encoding requires multiple probabilities to encode a single year. Thus, the resulting relevance heatmap
represents the regions of the globe that were most relevant to the neural network's confidence that the input
sample belongs to that decade. Even though we propagate only the information from the decade with the
highest output probability, samples from different years, for example, 1992 and 1998, will still result in differ-
ent heatmaps since the pathways throughwhich the informationflowed to generate the distributions of prob-
abilities were different. Furthermore, we have verified that propagating all output probabilities separately
(rather than just the largest) and summing their resulting relevance heatmaps leads to similar conclusions.
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3.4. Backward Optimization

Backward optimization can be used to gain a composite interpretation of the patterns contained within a
trained neural network (Olah et al., 2017; Simonyan et al., 2013; Yosinski et al., 2015). Toms et al. (2020) dis-
cuss the nuances of using backward optimization for geoscience applications, and we extend its use to inter-
pret differences between climate models and the observations. Briefly, given a trained neural network, an
input sample is incrementally adjusted towards the pattern most closely associated with a user‐defined pre-
diction. This adjustment procedure utilizes a similar method that we used to update the neural network
weights and biases during training (i.e., backpropagation). Rather than updating the weights and biases,
however, the input is incrementally updated to minimize the difference between the user‐defined desired
prediction and the prediction associated with the optimized input. Toms et al. (2020) provide a detailed sche-
matic and description of this process (their Figure 2).

We use backward optimization to understand differences between the patterns of forced change within cli-
mate models and those within observations. As discussed within section 3, we train neural networks to iden-
tify patterns of forced change within an ensemble of CMIP5 simulations, fromwhich the neural network can
identify the year of input maps of observed surface temperature and precipitation with reasonable accuracy.
We then use backward optimization to optimize the observational maps to the networks' understanding of
the climate simulations to infer biases within the climate models, the details of which are discussed within
Section 6.2. During the optimization procedure, we use a learning rate of 0.001 and stop optimizing the
inputs once the predicted year is correct from that point on (189 iterations for temperature, 122 iterations
for precipitation). The resultant changes from optimization therefore represent the minimum change neces-
sary to the input map in order for the neural network to correctly identify the year.

Figure 3. Predictions and regression weights from using multi‐linear regression of temperature at each grid point to predict the year of the map. The upper row
(a, b) uses no regularization (λ¼ 0.0) and the lower row (c, d) utilizes L2 regularization (λ¼ 0.1). (a, c) Training data are shown in gray, while colors denote
the different CMIP5 model simulations used for testing, where each color denotes a different simulation.
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4. Predictions Based On Multiple Linear Regression

While this work is focused on results from a nonlinear ANN, it is informative to first discuss results using a
standard linear approach. A linear approach, in particular, is useful for establishing a baseline for assessing
the importance of nonlinearities when predicting with a multilayer ANN. We begin by using all of the grid
points from a simulated annual‐mean surface temperature map to predict the year of the map via
multi‐linear regression. That is,

predicted year ¼ cþ a1 x 1 þ a2 x 2 þ a3 x 3 þ …þa4050 x 4050; (1)

where c denotes a constant, xj denotes the jth grid point on the globe (4050 in total) and aj denotes the
regression coefficient associated with that gridpoint, or the contribution of xj to the year prediction.
Furthermore, while LRP is not yet commonly used in climate science for interpreting neural networks,
the general idea can be described using techniques from linear regression, providing intuition for climate
scientists more familiar with this method. To make the comparison between the linear and non‐linear
ANN as simple as possible, we train the linear model similarly to the nonlinear ANN (i.e., using backpro-
pagation and gradient descent over 1000 iterations with a learning rate of 0.001).

Figure 3a shows the resulting predictions by this multi‐linear regression model based on temperature maps,
with the predicted year on the y‐axis and the actual year on the x‐axis. The gray dots depict the climate model
simulations used for training, while the colored dots depict the simulations used for testing. This linear
model appears to do an adequate job predicting the year, with most of the dots falling somewhere along
the one‐to‐one line (which denotes a perfect prediction). To visualize these predictions, Figure 3b shows a
map of the regression coefficients (aj in Equation 1), and depicts the importance of each input grid point
for the ultimate prediction of the year. This is similar to what LRP provides for nonlinear neural networks
‐ a picture of the importance of each input unit for the final prediction.

Although the predictions in Figure 3a generally lie along the one‐to‐one line, the map of regression coeffi-
cients in Figure 3b is nearly impossible to physically interpret because neighboring points often have large,
opposite‐signed weights. This occurs because the regression problem is underconstrained (i.e., there is a high
degree of collinearity among neighboring grid points), and thus, the regression task is permitted to overfit to
the noisy patterns within the temperature maps rather than the physically meaningful larger‐scale patterns
which are a known characteristic of atmospheric climate variability. Introducing regularization, which
penalizes weights with unnecessarily large values, spreads the weights across multiple grid points, and leads
to more coherent behavior between neighboring points, as seen in Figure 3d. In other words, regularization
imposes spatial auto‐correlation, a known property of geophysical data, and allows us to physically interpret
the learned regression weights. Warmer temperatures in western North America and northern Africa, for
instance, lead the model to predict a later year, while warmer temperatures over eastern China and the east-
ern North Pacific drive the model to predict an earlier year. In fact, Sippel et al. (2020) apply regularized lin-
ear regression to identify a single fingerprint of external forcing in daily surface temperature maps.

This multilinear regression example illustrates a few key points which are useful when thinking about non-
linear ANN predictions. First, one can interpret the regression model's prediction by visualizing the impor-
tance of each input unit (i.e., each predictor grid point) for the final output. Second, L2 regularization is
necessary for interpreting the learned patterns, although this can come at the price of reduced accuracy in
the predictions (compare Figures 3a and 3c). Since the aim of our study is to understand the patterns learned
by the ANN, a small reduction in accuracy is acceptable. Furthermore, we find that L2 regularization actu-
ally improves the nonlinear ANN accuracy for unseen testing data since it reduces the chances of overfitting.
Third, the interpretation of the multi‐linear regression prediction can be summarized in a single map that is
static through time (Figures 3b and 3d); however, in section 6, we show that LRP allows us to visualize the
importance of a region for the ANN's prediction as a function of time.

5. Predictions Based on ANNs

Figure 4a shows the prediction of the year by a nonlinear ANN based on input maps of surface temperature
from climate model simulations. B19 showed similar panels, but here, predictions are based on the fuzzy
classification scheme described in section 3.1. As in Figures 3a and 3c, the gray and colored dots denote
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the training and testing simulations, respectively. Comparing Figure 4a with Figures 3a and 3c, it is clear that
the ANN does a better job predicting the year—both for the training and testing simulations—compared to
multi‐linear regression. This strongly suggests that nonlinearities are important for accurate predictions.
However, as discussed extensively in B19, the ANN performs poorly prior to ∼1960 and becomes very
accurate as one moves later into the 21st Century. This is due to the increasing amplitude of forced
change with time, making it easier for the ANN to identify the year amidst a background of internal
variability and model disagreement over the later period.

White circles in Figure 4a depict predictions where maps of observed annual‐mean surface temperature
from the BEST data set are fed into the ANN trained on the climate models. Although the ANN was not
trained on observed maps, it still succeeds at predicting the year when fed observed maps. This implies that
the ANN is learning patterns of forced change from the climate models that are relevant for the observed
climate system. As in B19, we additionally train the ANN using maps where the global mean temperature
for that year has been removed. This allows us to assess the accuracy of the ANN when it must focus on
regional patterns alone. The result is shown in Figure 4b, and while the predictions spread further from
the one‐to‐one line compared to Figure 4a, the predictions still fall within 5 years of the true year post‐
2000. The biggest difference when the global mean is removed is that the predictions based on observed

Figure 4. (a) Year predicted by the neural network (y axis) versus the actual year (x axis) for (a) global maps of 2‐meter temperature, (b) as in (a) but the global
mean temperature has been removed from each map, (c) precipitation and (d) as in (c) but the global mean precipitation has been removed from each map.
The one‐to‐one line is plotted in black. Training data is shown in gray, while colors denote the different CMIP5 model simulations used for testing,
where each color denotes a different simulation. The white circles denote predictions based on observed maps.
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maps of temperature shift upward (∼30 years later). This suggests that the regional patterns learned from the
climate models may be delayed compared to what has been observed. We will explore these specific regional
patterns further in section 6.2.

While temperature exhibits one of the most robust responses to anthropogenic emissions over the 21st cen-
tury, the spatial pattern of precipitation changes is primarily driven by changes in atmospheric dynamics. As
a result, the precipitation response is much less certain—with larger internal variability and less year‐to‐year
agreement across models (Santer et al., 1994). ANN predictions of the year trained and tested on maps of
annual‐mean precipitation are shown in Figures 4c and 4d. Perhaps surprisingly, the ANN predictions
for the climate model simulations largely fall along the one‐to‐one line, even when the global mean has been
removed. This suggests that the ANN can identify reliable indicators of forced change in annual‐mean maps

Figure 5. Correlation of the actual years with the ANN‐predicted years based on observed maps of (a) temperature and
(b) precipitation. Different lines denote different iterations of training the ANN. (Gray shading) Histogram of possible
correlations between two time series with shuffled years (i.e., the range of correlations obtained when no relationship is
present). Bold letters denote the iterations that are associated with the four panels of Figure 4.
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of precipitation within both the 20th and 21st centuries. The predictions based on precipitation from GPCP,
however, are not as successful. While the ANN largely gets the ordering of the years correct when the global
mean is removed (Figure 4d), the slope of the predictions is far shallower than the one‐to‐one line, suggest-
ing that the timing of reliable patterns of change differ between the observations and climate models. We
revisit this discussion in Section 6.2.

While each panel of Figure 4 depicts only a single trained ANN, different ANN initializations and
training/testing sets can often lead to different results. Of particular interest here is the ability of the ANN
to correctly predict the year of observed maps. In Figure 5a, we plot the correlation of the actual years with
the predicted years based on observed maps of temperature for 21 iterations of training the ANN (vertical
orange lines). All correlations exceed 0.9, suggesting that all of the ANNs are able to discern the correct
ordering of the years. When this process is repeated for input maps with the global mean removed (vertical
purple lines), the correlations are reduced, as one might expect, since the ANN must rely solely on regional
spatial patterns of change. However, whether the global mean is retained or removed, the correlations far
exceed the distribution of correlations onemight expect from chance (gray histogram). An alternative metric
for assessing the observational predictions is the slope of the observed year predictions, with a perfect slope
being 1.0. These slopes are shown in Figure S2a and also demonstrate that the ANN is doing much better
than one would expect from chance.

Observation‐based correlations are smaller for precipitation compared to temperature (Figure 5b), consis-
tent with the smaller signal‐to‐noise ratio and larger disagreement in the forced response across climate
models. Unlike for temperature, the precipitation‐based correlations are much larger when the global mean
is removed (vertical purple lines) compared to when it is retained (vertical orange lines). In fact, most of the
trained ANNs exhibit negative correlations when the mean is retained, implying a complete inability to
predict the progression of years from observed maps of precipitation. The distribution of observed slopes
(Figure S2b) is also better when the global mean is removed, although the slopes still fall short of 1.0. The
improvement in predictions when the global mean is removed is indicative of a systematic difference
between the global mean precipitation of the GPCP observations and that of each of the CMIP5 simulations
(Figure S3). When the global mean is removed, the local patterns learned by the ANN trained on the climate
models are more relevant for predictions of observations.

6. Indicator Patterns
6.1. Time Varying Indicators of Change

While the results in Figures 4 and 5 demonstrate the ability of an ANN to predict the year of a temperature
(or precipitation) map, scientifically it is far more interesting to determine which patterns the ANN uses to
identify the year. That is, which regions serve as indicators of change amidst a background of climate varia-
bility and model uncertainty? To answer this question, we apply LRP to the trained ANNs to identify the
relevant regions for the ANN's predictions. As discussed previously, this is similar to making regression coef-
ficient maps (e.g., Figures 3b and 3d), but instead, these relevance maps can be made for each
input/prediction separately to highlight the regions of the globe that act as the most reliable indicators of
the year according to the ANN.

We apply LRP to predictions from all of the training and testing simulations based on the ANNs shown in
Figure 4. Figure S9 shows LRPmaps for a different ANN trained and testing on a different random combina-
tion of simulations to demonstrate robustness of the main indicators to the specific ANN. Since LRP outputs
a single relevance heatmap for every input/prediction, we have a total of 29 relevance heatmaps based on
temperature (one per simulation) for every year from 1920 to 2099. Figure 6 shows the average over all heat-
maps within ±2 years of the indicated year when the predictions are deemed “accurate.”We define an accu-
rate prediction as one within ±2 years of the true year. For example, the average relevance map for the year
2015 includes an average over all “accurate” predictions for maps from 2013 to 2017 (a total ofN¼ 60). Since
prediction accuracy largely improves as the forced signal grows in time, the number of accurate heatmaps
averaged together also generally increases from the 20th to 21st Century (denoted by N in each panel).

The average LRP heatmaps in Figure 6 illustrate the most relevant regions used by the ANN (Figure 4a) to
accurately predict the year of each temperature map (results for when the global mean is removed are shown
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in Figure S4). While akin to the regression coefficient maps in Figures 3b and 3d, these relevance heatmaps
vary in time due to the architecture of the ANN and thus reflect the most reliable indicators of change for a
particular year. The high‐latitude North Atlantic exhibits large relevance over the 20th and early 21st
century, while the Southern Ocean appears to increase in relevance throughout the 21st century. Eastern
China lights‐up as a relevant region for 1970 to 2020, and in fact, the multilinear regression method
(Figure 3d) also identifies eastern China as a key region for predicting the year. The difference is that the
ANN allows regions to play larger roles during some decades compared to others. This is shownmore clearly
in Figure 7, where we plot the average relevance (as a percentile of the relevance across each input map) for
eastern China and the north Arabian Sea as a function of year. While the north Arabian Sea becomes more
andmore relevant over time for the ANN's prediction, eastern China appears most relevant at the turn of the
century. This likely reflects the strong forcing signal due to aerosols during these decades, which acts to cool
the local temperatures (Fiore et al., 2015; see their Figure 4). Thus, the ANN has learned that strong cooling
in eastern China relative to other regions is an indicator that the map is likely from the turn of the century.
The north Arabian Sea appears to become more relevant with time because of its relatively small internal
variability and so the forced signal emerges in the early 21st Century and remains strong (as shown later
in Figures 9c and S5c).

Given the formulation of the LRP method, it is important to remember that the temporal evolution of a
region's relevance should not be solely interpreted as its temporal forced climate response. Instead, these
maps indicate the most relevant regions for a particular prediction, and so, a region may lose relevance if
other regions become more relevant in later years.

Relevance heatmaps for the precipitation when the global mean is removed (i.e., Figure 4d) are shown in
Figure 8. Figure S10 shows similar heatmaps for a different ANN to demonstrate robustness of themain indi-
cators to the specific ANN. Even with L2 regularization, the precipitation heatmaps in Figure 8 appear

Figure 6. Layerwise relevance propagation (LRP) heatmaps for temperature input maps composited for a range of years when the prediction was deemed accurate
(see text for details). The years are shown above each panel along with the number of maps used in the composites. Darker shading denotes regions that are more
relevant for the ANN's accurate prediction.
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Figure 7. Average relevance percentile as a function of year for eastern China and the North Arabian sea using the
temperature‐based ANN. Relevance is only averaged over accurate predictions (see text for details), and averages with
fewer than 10 samples are denoted with an “o.”

Figure 8. Layerwise relevance propagation (LRP) heatmaps for precipitation input maps with the global mean removed composited for a range of years when the
prediction was deemed accurate (see text for details). The years are shown above each panel along with the number of maps composited. Darker shading denotes
regions that are more relevant for the ANN's accurate prediction.
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noisier than those for temperature due to the more local nature of precipitation. Even so, relevant indicator
patterns can still be seen. For example, LRP highlights Antarctica and eastern China as relevant when mak-
ing accurate predictions during the 20th century. By the end of the 21st century; however, the western coasts
of South America and southern Africa, as well as the Mediterranean, dominate the relevance maps. The
regions highlighted by LRP signify the nonlinear, time evolution of where the signal‐to‐noise is large,
and/or where the models agree on the response, and/or where relationships between grid points can be
leveraged.

Given this, many of the indicator regions identified by the ANN have direct ties to more standard signal‐to‐
noise patterns used frequently in climate science. Figure 9 shows these standard signal and signal‐to‐noise
maps for temperature (Figures 9a, 9c, and 9e) and precipitation (Figures 9b, 9d, and 9f) for the turn of the
century (1990–2009). Similar maps for the end of the 21st century (2070–2099), when the forced climate
change signal is much larger, are provided in Figure S5.

Figure 9a shows the change in mean surface temperature between 1990–2009 and 1920–1949, averaged over
all of the climate model simulations. This is the classic temperature change “signal.” The well‐known pat-
tern of Arctic amplification is evident, whereby the Arctic warms at an accelerated rate compared to the rest
of the globe (Fyfe et al., 2013; Holland & Bitz, 2003). Figure 9c shows the model‐averaged signal‐to‐noise
ratio, which quantifies the ratio of the signal (Figure 9a) to the year‐to‐year internal noise of the system.

Figure 9. (a) Multimodel average change in temperature between 1990–2009 and 1920–1949. (c) The average across models of each model's signal‐to‐noise ratio,
where the signal is defined by the change in temperature and the noise is defined by the internal noise of the model (see text for details). (e) The multi‐model
signal‐to‐noise ratio, where the signal is defined by the change in temperature and the noise is defined by total spread/range of change across models. (b, d, f) as in
(a, c, e) except for precipitation. Yellow boxes denote example regions which show enhanced importance using LRP in Figures 6 and 8.
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Specifically, we define this as the temperature signal for each model divided by that model's standard
deviation of annual‐mean temperature over the 1920–1949 period, then averaged across all models.
Finally, Figure 9e provides a measure of signal‐to‐model disagreement, whereby the signal is defined as
the model‐averaged signal (Figure 9a) divided by the total spread of the signal (maximum‐minimum)
across the climate models. Focusing once again on the Arctic, although the signal is large (Figure 9a), the
internal variability and model disagreement are too, and thus, the signal‐to‐noise ratios in Figures 9c and
9e are small. This low Arctic signal‐to‐noise ratio is also learned by the ANN, as seen in the LRP
relevance maps in Figure 6. This is why the ANN chooses not to focus on the Arctic when making its
predictions. Figures 9b, 9d, and 9f are defined similarly but for precipitation.

Yellow boxes in Figure 9 highlight example regions during the 1990s and 2000s that show enhanced rele-
vance using LRP (Figures 6 and 8). For example, northern Africa is identified as important for accurate
ANN predictions over the 1990s, and this region is also seen to have generally large model agreement in
its response (Figure 9e). Eastern China is also identified as relevant for the ANN for both temperature and
precipitation (Figures 6 and 8). For precipitation (Figures 9b, 9d, and 9f), the signal, signal‐to‐noise and
model agreement are all large there, but for temperature, the signal and signal‐to‐noise appears near zero.
The weak temperature response (or in some cases, cooling) over eastern China, however, compared to the
warming elsewhere acts as a reliable indicator of the year. Other similar regions identified by LRP and

Figure 10. (a) Fuzzy classification output based on observed maps of 1997 and 2015. Tick marks on the y‐axis list every 2nd class for space reasons. (b, c) Observed
temperature input maps plotted as anomalies from the baseline period of 1961–1990. (d, e) Layerwise relevance propagation heatmap for the ANN's year
prediction.
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standard signal‐to‐noise maps include the North Atlantic for temperature, and Antarctica/Southern Ocean
for precipitation. With that said, we do not expect all of the patterns identified by LRP to appear in the signal‐
to‐noise maps as LRP allows relationships between regional signals to be leveraged nonlinearly in time,
something that is not captured by a single signal‐to‐noise map.

6.2. Indicator Patterns in Observations

Given that LRP allows us to identify the “reasoning” of the ANN for each input (prediction) separately, we
can use it to identify the regions that are relevant for predictions based on observations (white dots in Figure

Figure 11. (a) Observed temperature anomaly maps with the global mean removed, plotted as anomalies from the baseline period of 1961–1990. (c) Optimized
input map determined using backward optimization. (e) Difference between (c) and (a). (g) As in (e) but standardized by the local standard deviation, defined from
the detrended values over the baseline period. (b, d, f, h) Similar panels but for observed precipitation anomaly maps with the global mean removed, plotted as
anomalies from the baseline period of 1979–1999.
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4). Figure 10 shows the LRP relevance heatmaps when the observed temperature maps for 1997 (Figures 10b
and 10d) and 2015 (Figures 10c and 10e) are fed into the ANN (see Figure S6 for examples using
precipitation). Figure 10a displays the predicted probabilities for each decade output by the ANN.
Although the temperature anomaly patterns are quite different between 1997 and 2015, the ANN uses
similar regions for its prediction (Figures 10d and 10e). Namely, the largest relevance appears to be over
the Southern Ocean and western coast of southern Africa, although many other regions also have
non‐zero relevance. Furthermore, while 1997 exhibited a large El Nino signal (warming in the eastern tro-
pical Pacific), and 2015 had anomalously warm temperatures throughout the northern mid‐to‐high lati-
tudes, neither of these regions are identified as relevant for the ANN predictions. This once again
highlights that the ANN identifies the most reliable signals/regions, rather than just the largest anomalies.

While the ANN predictions based on observed temperature maps are generally very good (white circles in
Figure 4a), the predictions based on observed maps when the global mean is removed are shifted approxi-
mately 30 years too late (white circles in Figure 4b). Figure 11a shows the observed temperature anomalies
in 1985 with the global mean removed, and the ANN incorrectly predicts the year is 2016 based on this map
(31 years too far into the future). Using backward optimization (section 3.4), we optimize the observed map
(Figure 11a) to allow the ANN to make a more accurate prediction. Figure 11c shows an optimized map that
leads the ANN to accurately predict 1985. While Figures 11a and 11c look very similar, their difference
(Figure 11e) shows that subtle changes in the temperature patterns can improve the ANN prediction by
31 years. Figure 11g shows the same changes, but scaled by the local standard deviation of temperature
(defined from linearly detrended values over the 1961–1990 baseline period). The optimized input changes
reflect the changes necessary for an accurate ANN prediction, and the magnitude of these changes (either in
physical units or standard deviations) correspond to the threshold at which the optimized signal becomes
identifiable above the noise.

In a general sense, Figure 11g shows that cooling the continents and North Pacific ocean and warming the
rest of the oceans in 1985 would lead the ANN to amuchmore accurate prediction. The concept of cooling or
warming the observed globe seems rather odd since the observed map is what actually occurred. However,
the ANN was trained on climate model simulations, and so, from the point‐of‐view of the ANN, it is the
observations that need to be adjusted. If we change our framing, we can instead view Figure 11g as highlight-
ing the fact that the climate models upon which the ANNwas trained are too cold over land compared to the
oceans. That is, this method has extracted a critical model bias in regional patterns of warming in the 1980s.
To support the robustness of this result, Figure S7 shows that optimizing the observed 2015 map (rather than
1985) extracts a similar climate model bias—namely that the land does not warm fast enough relative to the
oceans in climate model simulations (Figures S7f and S7h).

The right column of Figure 11 shows a similar analysis but for the observed 1985 precipitation map, where
the global mean has been removed (Figure 11b). As for temperature, the ANN predicts too late of a year for
this input map, predicting the year 2000 for the 1985 observed map. Backward optimization leads to the opti-
mized map shown in Figure 11d, and when fed this optimized map, the ANN is able to predict the correct
year of 1985. Figure 11h shows the optimized changes (in local standard deviation), and we see that the opti-
mized map has increased precipitation anomalies off of the coast of South America, southern Africa, and
eastern Antarctica, and decreased precipitation anomalies over northern Africa and central Asia. Once
again, these changes can be interpreted as regions where climate model simulations are too wet (blue/green
shading) or too dry (brown/orange shading) relative to the GPCP observations. Figures S8f and S8h show
that the same regional biases are extracted when one optimizes the observed 2005 precipitation map, sug-
gesting these biases are present for multiple decades.

7. Conclusions

We identify reliable indicator patterns of forced change within annual‐mean surface temperature and pre-
cipitation maps from climate model simulations using artificial neural networks (ANNs) and two powerful
visualization methods, layerwise relevance propagation and backward optimization. The indicator patterns
vary through time, and the ANN captures the nonlinear, time evolution of the signal‐to‐noise ratio and
model agreement by leveraging relationships between grid points. Since layerwise relevance propagation
identifies the regions that are most relevant for a given prediction, we apply it to input maps of
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observational data that were not used during training of the ANN. We find, for example, that the ANN iden-
tifies the Southern Ocean as a reliable indicator of forced change within the observational record. Finally, we
use backward optimization to identify the relevant regions where climate models are most different from
observations for any given year. For example, temperature results show that models are too cold over the
land and too warm over the oceans, while results for precipitation suggest that models are too wet off the
western coasts of South America and Africa.

While previous work by Barnes et al. (2019) demonstrated that ANNs are capable of identifying patterns of
forced change in climate model simulations, they did not present the patterns themselves due to the com-
plexity of visualizing the nonlinear decision making process of an ANN. Since then, neural network visua-
lization tools developed by the computer science community have been introduced to the geosciences (e.g.,
McGovern et al., 2019; Toms et al., 2020), and allow for visualization and interpretation of the fully nonlinear
ANN. Thus, while this work highlights their use for visualizing forced patterns of change, we suggest that it
is likely the first of many to demonstrate the profound ability of neural networks and their visualization
methods to extract climate patterns from the noise.

Appendix A: Details on the ANN Architecture and Training

A1 Activation Function

All units use the activation function ReLu, except for the output layer. ReLu, also known as the rectified lin-
ear unit, is a commonly used activation function within neural network architectures and is defined as f(x)¼
max(0,x). This function is linear in its output when the input, x, is positive.

A2 Soft‐max Layer

For the output, a soft‐max layer is applied before the final class probabilities are predicted. The soft‐max
function is commonly used in classification problems. The soft‐max function is defined for a vector of values
x of length N as

f ðxÞi ¼
expxi

∑N
j¼1exp

xj
; (A1)

where i indicates the specific elements of the vector x. The soft‐max function acts to rescale the final
values such that they add to one, which in our case, is advantageous since this allows us to view the output
as weightings associated with each decade.

A3 Loss Function

We train the neural network using the binary cross‐entropy loss between the predicted class probabilities
and the correct class values. The binary cross‐entropy loss for each sample is defined as

Loss ¼ −∑
N

k¼1
yklogðpðykÞÞþð1 − ykÞlogð1 − pðykÞÞ½ �; (A2)

where k denotes the kth class, yk denotes the true value for class k in that sample, and p(yk) denotes the
predicted probability of class k. This function acts to penalize the model more when the model is confident
in its prediction (i.e. predicts a higher probability) but it is wrong.

A4 Training

The ANNwas trained using the Keras stochastic gradient descent optimizer (“SGD”) with Nesterov momen-
tum turned on, learning rate¼ 0.01, momentum¼ 0.9, and a batch size¼ 32. These parameters were chosen
by comparing results across a range of parameter values for each and choosing those that exhibited both high
accuracies and interpretable patterns. Our results and conclusions are robust to variations in these choices.
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ANNs based on maps of temperature were trained for 500 iterations, while ANNs based on precipitation
were only trained for 250 iterations as more iterations substantially degraded performance.
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